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Abstract

We demonstrate the existence of a broad class of real numbers which are not elements of
any number field: those in the neighborhood of infinity. After considering the reals and
the affinely extended reals, we prove that numbers in the neighborhood of infinity are
ordinary real numbers. As an application in complex analysis, we show that the Riemann
zeta function has infinitely many non-trivial zeros off the critical line in the neighborhood
of infinity.
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§1. Real Numbers

Definition 1.1. A real number x ∈ R is a cut in the real number line.

Definition 1.2. A cut in a line separates one line into two pieces.

Remark. A number is a cut in a line. A line is defined a priori. All lines can be

cut so all lines are number lines. A given line is the real line by definition. A real

number separates the real number line into a set of “larger” real numbers and a

set of “smaller” real numbers.

Definition 1.3. The real numbers are defined in interval notation as

R ≡ (−∞,∞) .

Definition 1.4. Call real numbers in the neighborhood of the origin x ∈ R0.

Define them such that

x ∈ R0 ⇐⇒ x ∈ R , and − n < x < n ,

for some n ∈ N.
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Definition 1.5. Call real numbers in the neighborhood of infinity x ∈ R∞. Define

them as all real numbers except for real numbers in the neighborhood of the origin:

R∞ ≡ R \ R0 .

Remark. The main result of this paper demonstrates that R∞ is not an empty

set.

Definition 1.6. For x ∈ R and n ∈ N, we have the property

lim
x→0±

1

x
= diverges , and lim

n→∞

n∑
k=1

k = diverges .

§2. Affinely Extended Real Numbers

Definition 2.1. Define two affinely extended real numbers ±∞ such that for

x ∈ R and n ∈ N

lim
x→0±

1

x
= ±∞ , and lim

n→∞

n∑
k=1

k =∞ .

Definition 2.2. The set of all affinely extended real numbers is

R ≡ R ∪ {±∞} .

Definition 2.3. The affinely extended real numbers are defined in interval nota-

tion as

R ≡ [−∞,∞] .

Definition 2.4. An affinely extended real number x ∈ R is ±∞ or it is a cut in

the affinely extended real number line.

Definition 2.5. In R, ±∞ are such that the limit of any monotonic sequence of

real numbers which diverges in R is equal to ∞ or −∞.

Theorem 2.6. If x ∈ R and x 6= ±∞ then x ∈ R.

Proof. Proof follows from Definition 2.2.

Definition 2.7. Infinity is such that

∞−∞ = undefined , and
∞
∞

= undefined .
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Definition 2.8. Infinity does not have the distributive property of multiplication.

For two non-zero real numbers a and b we have

∞ ·
(
b+ a

)
=∞ .

To the contrary, we write for two orthogonal unit vectors ê1 and ê2

∞ ·
(
ê1 + ê2

)
= undefined .

Remark. In Definition 2.8 the former case gives the appearance of a distributive

property because we can sum b + a and then use the multiplicative absorptive

property of ∞ to obtain a simplified result but we cannot do so in the latter case

which is only mentioned in anticipation of the expression∞·
(
x+iy

)
which appears

in Section 5.

§3. Modified Infinity

Definition 3.1. Additive absorption is a property of ±∞ such that non-zero

numbers are additive identities of ±∞. The additive absorptive property is

±∞± x = ±∞∓ x = ±∞ , for x ∈ R0 , x 6= 0 .

Definition 3.2. Let the symbol ∞̂ be called modified infinity and endow it with

every property of ∞ except additive absorption.

Definition 3.3. Infinity and modified infinity both describe the same affinely

extended real number

±∞̂ = ±∞ =⇒ R ≡ [−∞̂, ∞̂] .

Definition 3.4. The hat which differentiates modified infinity±∞̂ from canonical

infinity ±∞ is inserted and removed by choice except in the case where it invokes

a contradiction and must be removed by definition. If a contradiction is obtained

via non-absorptivity then the hat must be removed to alleviate the contradiction.

Remark. When the ±∞ symbols appear as ±∞̂, consider the hat be an instruc-

tion to delay the additive absorption of ±∞ indefinitely or until such delay causes

a contradiction. The instruction to “delay additive absorption” should be under-

stood to mean that additive absorption is not a property of ±∞̂ but that the

additive absorptive property can be trivially implemented after an ad hoc decision

to remove the hat by choice or after its removal is required by definition.
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Example 3.5. An example of a statement in which the hat does not invoke a

contradiction and may be left in place is

x = ∞̂ − b .

Example 3.6. An example of a statement in which the hat invokes a contradic-

tion and may not be left in place is given by two sequences

xn =

n∑
k=1

k , and yn = c0 +

n∑
k=1

k ,

where n ∈ N and c0 is some non-zero real number. Since ∞ and ∞̂ are the same

number we can use Definitions 2.1 and 3.2 to write

lim
n→∞

xn =∞ = ∞̂ , and lim
n→∞

yn =∞ = ∞̂ .

We may also write, however,

lim
n→∞

yn = lim
n→∞

c0 + lim
n→∞

xn = c0 + ∞̂ .

This delivers an equality

∞̂ = c0 + ∞̂ ,

which contradicts the delayed additive absorption of ∞̂. At this point, we must

cease to delay additive absorption by removing the hat. Then

∞ = c0 +∞ ,

demonstrates the usual additive absorptive property of infinity and there is no

contradiction.
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Definition 3.7. ∞̂ is such that for any non-zero b ∈ R0

±∞̂+ b = b± ∞̂
±∞̂ − b = −b± ∞̂

±∞̂+
(
− b
)

= ±∞̂ − b
±∞̂+ b = ±∞̂ −

(
− b
)

−
(
± ∞̂

)
= ∓∞̂

±∞̂ · b = b · ±∞̂ =

{
±∞̂ if b > 0

∓∞̂ if b < 0

±∞̂
b

=

{
±∞̂ if b > 0

∓∞̂ if b < 0

b

± ∞̂
= 0 .

Definition 3.8. ∞̂ is such that

±∞̂+ 0 = 0± ∞̂ = ±∞̂ − 0 = undefined

±∞̂ · 0 = 0 · ±∞̂ = undefined

±∞̂
0

= undefined

0

± ∞̂
= 0 .

Remark. We will revisit the lack of an additive identity in Example 4.11.

Definition 3.9. ±∞ has all the properties assigned to ±∞̂ in Definitions 3.7 and

3.8 plus the additive absorptive operation of Definition 3.1.

§4. Real Numbers in the Neighborhood of Infinity

Definition 4.1. Let R̂ be the set of all numbers of the form

x = ±
(
∞̂ − b

)
, where b ∈ R0 , b > 0 ,
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Definition 4.2. The ordering of R̂ numbers is such that

±
(
∞̂ − b

)
= ±

(
∞̂ − a

)
⇐⇒ a = b(

∞̂ − b
)
>
(
∞̂ − a

)
⇐⇒ a > b

−
(
∞̂ − b

)
> −

(
∞̂ − a

)
⇐⇒ a < b(

∞̂ − b
)
> −

(
∞̂ − a

)(
∞̂ − b

)
> x ∀ x ∈ R0

−
(
∞̂ − b

)
< x ∀ x ∈ R0 .

Theorem 4.3. All numbers x ∈ R̂ are cuts in the affinely extended real number

line, i.e.: they are affinely extended real numbers.

Proof. By Definition 2.4, an affinely extended real number is a cut in or endpoint of

the affinely extended real number line. Definition 1.2 requires that a cut separates

one line into two pieces. Observe that

R \ (∞̂ − b) ≡ [−∞, ∞̂ − b) ∪ (∞̂ − b,∞]

R \
(
− ∞̂+ b

)
≡ [−∞,−∞̂+ b) ∪ (−∞̂+ b,∞] .

All numbers x ∈ R̂ conform to the definition of affinely extended real numbers.

Main Theorem 4.4. All numbers x ∈ R̂ are real numbers.

Proof. If a number is an affinely extended real number x ∈ R and x 6= ±∞ then

by Theorem 2.6 we have x ∈ R. In the absence of additive absorption,

±
(
∞̂ − b

)
6= ±∞̂ = ±∞ ,

because it is the definition of R̂ that b 6= 0. Also note that

R/(∞̂ − b) ≡ (−∞, ∞̂ − b) ∪ (∞̂ − b,∞) .

All numbers x ∈ R̂ satisfy Definition 1.1.

Theorem 4.5. All numbers x ∈ R̂ are real numbers in the neighborhood of infinity

x ∈ R∞.

Proof. We have shown in Main Theorem 4.4 that

R̂ ⊂ R ,

so we will satisfy Definition 1.5 if we show

R̂ ∩ R0 ≡ ∅ .
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Definition 1.4 requires that elements of R0 satisfy

−n < x < n ,

so assume

−n < ±
(
∞̂ − b

)
< n .

Since b ∈ R0 we know it has an additive inverse. Add or subtract b to obtain

−n+ b < ∞̂ < n+ b , and − n− b < −∞̂ < n− b .

We obtain a contradiction as∞ cannot be less than the sum of two finite numbers

and −∞ cannot be greater than the difference of two finite numbers. All R̂ numbers

satisfy the definition of R∞.

Remark. The remaining definitions in the section define the arithmetic opera-

tions for R̂ numbers. The purpose in defining these operations is to supplement

the canonical operations for R0 and ∞ ∼ ∞̂. Every R̂ number can be decomposed

and its pieces manipulated separately but the main purpose of defining special

operations for R̂ is to define new operations for expressions which are undefined

under the arithmetic operations of R0 and ∞ alone or whose structure vanishes

under additive absorption.

Definition 4.6. The arithmetic operations of R̂ numbers with R0 numbers are

−
(
∞̂ − b

)
= −∞̂+ b

−
(
− ∞̂+ b

)
= ∞̂ − b

±
(
∞̂ − b

)
+ x = x±

(
∞̂ − b

)
=

{
±∞̂ ∓

(
b− x

)
if b 6= x

±∞̂ if b = x

±
(
∞̂ − b

)
· x = x · ±

(
∞̂ − b

)
=

{
±
(
∞̂ − xb

)
if x 6= 0

undefined if x = 0

±
(
∞̂ − b

)
x

=

±∞̂ ∓
b

x
if x 6= 0

undefined if x = 0

x

±
(
∞̂ − b

) = 0 .

Theorem 4.7. The quotient of a number x ∈ R0 divided by a number y ∈ R̂ is

identically zero.
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Proof. Let z be any non-zero real number such that

x

y
= z .

Since ||x|| < ||y||, we have ||z|| < 1 which implies z ∈ R0. All R0 numbers have a

multiplicative inverse. We find, therefore, that

x

zy
= 1 ⇐⇒ x = zy .

The hat on ∞̂ only suppresses additive absorption so

zy = z · ±
(
∞̂ − b

)
= ±

(
∞̂ − zb

)
.

This delivers a contradiction because it requires that x is a real number in the

neighborhood of infinity while we have already defined it to be a real number in

the neighborhood of the origin. Therefore, the only possible numerical value for

x/y is 0.

Definition 4.8. The arithmetic operations of R̂ numbers with R̂ numbers are

±
(
∞̂ − b

)
±
(
∞̂ − a

)
=

{
±∞̂ ∓

(
b+ a

)
if a 6= −b

±∞̂ if a = −b

±
(
∞̂ − b

)
∓
(
∞̂ − a

)
= ±

(
a− b

)(
∞̂ − b

)(
∞̂ − a

)
= undefined

∞̂ − b
∞̂ − a

= undefined .

Theorem 4.9. Products of the form R̂ · R̂ are undefined.

Proof. ∞̂ is not endowed with the distributive property of multiplication so(
∞̂ − b

)(
∞̂ − a

)
= ∞̂

(
∞̂ − a

)
− b
(
∞̂ − a

)
= undefined .

Theorem 4.10. Quotients of the form R̂/R̂ are undefined.

Proof. Observe that
∞̂ − b
∞̂ − a

=
∞̂
∞̂ − a

− b

∞̂ − a
.

Insert the multiplicative identity into the first term so that

∞̂ · 1
∞̂ − a

= ∞̂
(

1

∞̂ − a

)
= ∞̂ · 0 = undefined .
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Remark. Although (
∞̂ − b

)
−
(
∞̂ − a

)
= a− b ,

implies the existence of an additive inverse for every R̂ number, this does not

imply an additive inverse for ∞ because the case of a = b = 0 is ruled out by the

definition of R̂.

Example 4.11. Definition 3.8 states that infinity does not have an additive iden-

tity element. An example motivating this condition is given by the limit

lim
x→∞

(
x2 − x

)
=∞

lim
x→∞

(
x2 − x

)
= lim

x→∞
x2 − lim

x→∞
x =∞−∞ .

which is usually used to demonstrate the lack of an additive inverse for∞. If infinity

is bestowed with an additive inverse then we obtain a contradiction ∞ = 0. The

expression∞−∞ is thus undefined. If we added the hats to infinity then we could

insert the additive identity to write

∞ = ∞̂ − ∞̂ = ∞̂ − ∞̂+ 0 = ∞̂ − ∞̂+ 1− 1 =
(
∞̂ − 1

)
−
(
∞̂ − 1

)
= 0 .

We see that unhatted infinity likewise cannot have zero as an additive identity

because we could write

∞ =∞−∞ =∞−∞+
(
1− 1

)
= ∞̂ − ∞̂+ 1− 1 =

(
∞̂ − 1

)
−
(
∞̂ − 1

)
= 0 .

where we have simply chosen not to do the additive absorptive operation within

the freedom afforded to the order of algebraic operations. This example confirms

that the only difference between ∞ and ∞̂ is an instruction to delay additive

absorption for the latter.

Remark. The expressions ∞ and ∞̂ are perfectly well defined but ∞ + 0 and

∞̂ + 0 are examples of an undefined composition. Since, ∞ is not an R̂ number,

this property cannot create problems for the algebra of R̂ numbers. Essentially, we

have traded the zero additive identity element of infinity for the freedom to add

and subtract R̂ numbers.

Theorem 4.12. An R̂ number does not have a multiplicative inverse.

Proof. Assume

x
(
∞̂ − b

)
= 1 .

If x ∈ R̂ then the operation is undefined. If x ∈ R0 then we obtain

∞̂ − xb = 1 .
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This is a contradiction because it requires that 1 is a number in the neighborhood

of infinity. If x ∈ R∞ is a positive number less than every positive R̂ number then

we find that the product of two real numbers larger than one is equal to one. This

is another contradiction. If x is a negative number then its product with a positive

real number must be negative.

Remark. Since real numbers in the neighborhood infinity do not always have

a multiplicative inverse such numbers cannot be elements of number fields. The

common practice of using number fields as a generalized proxy for all numbers,

therefore, should be considered to have a narrower scope of valid application than

is commonly understood.

§5. Complex Numbers

Definition 5.1. A number is a complex number z ∈ C if and only if

z = x+ iy , where x, y ∈ R , i =
√
−1 .

Definition 5.2. As ∞ does not absorb −1 in 1D, in 2D we have the condition

that infinity does not absorb −1 or ±i.

Definition 5.3. As the extended real line has two distinct infinites, the extended

complex plane has four: {+∞,+i∞,−∞,−i∞}.

Definition 5.4. The affinely extended complex plane is

C ≡ C ∪ {±∞} ∪ {±i∞} .

Definition 5.5. The multiplicative operations for ±∞ and ±i∞ with i are

±∞ · i = ±i∞
±i∞ · i = ∓∞ .

Remark. The non-distributive property of ±∞ (Definition 2.8) was practically

redundant in 1D but for z ∈ C this feature gains significance.
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Definition 5.6. The multiplicative operations for ±∞ with complex numbers

z ∈ C are

±∞ · z = z · ±∞ =



±∞ if Re(z) > 0 and Im(z) = 0

∓∞ if Re(z) < 0 and Im(z) = 0

±i∞ if Im(z) > 0 and Re(z) = 0

∓i∞ if Im(z) < 0 and Re(z) = 0

undefined if Im(z) 6= 0 and Re(z) 6= 0

undefined if z = 0

.

Definition 5.7. The multiplicative operations for ±i∞ with complex numbers

z ∈ C are

±i∞ · z = z · ±i∞ =



±i∞ if Re(z) > 0 and Im(z) = 0

∓i∞ if Re(z) < 0 and Im(z) = 0

∓∞ if Im(z) > 0 and Re(z) = 0

±∞ if Im(z) < 0 and Re(z) = 0

undefined if Im(z) 6= 0 and Re(z) 6= 0

undefined if z = 0

.

Definition 5.8. The arithmetic operations for complex numbers z ∈ C whose real

and/or imaginary parts are R̂ numbers follow directly from the other definitions.

Corollary 5.9. The Riemann zeta function has infinitely many non-trivial zeros

off the critical line.

Proof. Consider a number z0 ∈ C such that

z0 = −
(
∞̂ − b

)
+ iy0 , where b, y0 ∈ R0 , b 6= 0 .

Observe that

ζ(z0) =
∏

p|primes

1

1− p(∞̂−b)−iy0

=
1

1− P (∞̂−b)−iy0

 ∏
p|primes

p 6=P

1

1− p(∞̂−b)−iy0



=
1

1− 1

P b
P ∞̂

[
cos(y0 lnP )− i sin(y0 lnP )

]
 ∏

p|primes
p 6=P

1

1− p(∞̂−b)−iy0

 .
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Let y0 lnP = 2nπ for some prime P and n ∈ N. Then

ζ(z0) =
1

1− ∞̂

 ∏
p|primes

p 6=p′

1

1− p(∞̂−b)−iy0

 .

By Theorem 4.7, we find that

ζ(z0) = 0 .

Since z0 neither is on the critical line nor the real axis, the Riemann hypothesis is

false.
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